LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2011

MT 1812 - ORDINARY DIFFERENTIAL EQUATIONS

Date: 05-11-2011 Time: 1:00 - 4:00	Dept. No.	Max.: 100 Marks

Answer all questions. Each question carries 20 marks.

1. (a) Prove that $x(t) = x_p(t) + x_h(t)$ is the general solution of L(x(t)) = d(t) on I where $x_p(t)$ is any particular solution of L(x(t)) = d(t) and $x_h(t)$ is the general solution of the homogeneous equation L(x(t)) = 0.

(OR)

- (b) Prove that $x = ct^2 + t + 3$, $t \ge 0$, is a solution of $t^2x'' 2tx' + 2x = 6$. (5)
- (c) Prove that $uL(v) vL(u) = a_0(t) \frac{d}{dt} W[u, v] + a_1(t) W[u, v]$, where u, v are twice differentiable functions and a_0, a_1 are continuous on I. Also deduce Abel's formula.

(15) (OR)

- (d) By the method of variation of parameters, find the general solution of $x'''(t) x'(t) = \cos t$.

 (15)
- 2. (a) i) Find the indicial equation of $2x \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$. (5)

(OR)

- (b) Whenever n is an integer, positive or negative, show that $J_{-n}(X) = (-1)^n J_n(X)$.
- (c) Solve by Frobenius method, $x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} y = 0.$ (15)

(OR)

- (d) Solve the Legendre's equation, $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + l(l+1)y = 0$. (15)
- 3. (a) Show that the explicit expression for the legendre polynomials (1) $P_t(-1) = (-1)^l$ and (2) $P_t(1) = \frac{1}{2}l(l+1)$. (5)

(OR)

(b) Show that F(1; p; p; x) = 1/(1-x). (5)



